88 research outputs found

    Borna Disease Virus Blocks Potentiation of Presynaptic Activity through Inhibition of Protein Kinase C Signaling

    Get PDF
    Infection by Borna disease virus (BDV) enables the study of the molecular mechanisms whereby a virus can persist in the central nervous system and lead to altered brain function in the absence of overt cytolysis and inflammation. This neurotropic virus infects a wide variety of vertebrates and causes behavioral diseases. The basis of BDV-induced behavioral impairment remains largely unknown. Here, we investigated whether BDV infection of neurons affected synaptic activity, by studying the rate of synaptic vesicle (SV) recycling, a good indicator of synaptic activity. Vesicular cycling was visualized in cultured hippocampal neurons synapses, using an assay based on the uptake of an antibody directed against the luminal domain of synaptotagmin I. BDV infection did not affect elementary presynaptic functioning, such as spontaneous or depolarization-induced vesicular cycling. In contrast, infection of neurons with BDV specifically blocked the enhancement of SV recycling that is observed in response to stimuli-induced synaptic potentiation, suggesting defects in long-term potentiation. Studies of signaling pathways involved in synaptic potentiation revealed that this blockade was due to a reduction of the phosphorylation by protein kinase C (PKC) of proteins that regulate SV recycling, such as myristoylated alanine-rich C kinase substrate (MARCKS) and Munc18–1/nSec1. Moreover, BDV interference with PKC-dependent phosphorylation was identified downstream of PKC activation. We also provide evidence suggesting that the BDV phosphoprotein interferes with PKC-dependent phosphorylation. Altogether, our results reveal a new mechanism by which a virus can cause synaptic dysfunction and contribute to neurobehavioral disorders

    Mutation of the Protein Kinase C Site in Borna Disease Virus Phosphoprotein Abrogates Viral Interference with Neuronal Signaling and Restores Normal Synaptic Activity

    Get PDF
    Understanding the pathogenesis of infection by neurotropic viruses represents a major challenge and may improve our knowledge of many human neurological diseases for which viruses are thought to play a role. Borna disease virus (BDV) represents an attractive model system to analyze the molecular mechanisms whereby a virus can persist in the central nervous system (CNS) and lead to altered brain function, in the absence of overt cytolysis or inflammation. Recently, we showed that BDV selectively impairs neuronal plasticity through interfering with protein kinase C (PKC)–dependent signaling in neurons. Here, we tested the hypothesis that BDV phosphoprotein (P) may serve as a PKC decoy substrate when expressed in neurons, resulting in an interference with PKC-dependent signaling and impaired neuronal activity. By using a recombinant BDV with mutated PKC phosphorylation site on P, we demonstrate the central role of this protein in BDV pathogenesis. We first showed that the kinetics of dissemination of this recombinant virus was strongly delayed, suggesting that phosphorylation of P by PKC is required for optimal viral spread in neurons. Moreover, neurons infected with this mutant virus exhibited a normal pattern of phosphorylation of the PKC endogenous substrates MARCKS and SNAP-25. Finally, activity-dependent modulation of synaptic activity was restored, as assessed by measuring calcium dynamics in response to depolarization and the electrical properties of neuronal networks grown on microelectrode arrays. Therefore, preventing P phosphorylation by PKC abolishes viral interference with neuronal activity in response to stimulation. Our findings illustrate a novel example of viral interference with a differentiated neuronal function, mainly through competition with the PKC signaling pathway. In addition, we provide the first evidence that a viral protein can specifically interfere with stimulus-induced synaptic plasticity in neurons

    Human cytomegalovirus infection is associated with increased expression of the lissencephaly gene PAFAH1B1 encoding LIS1 in neural stem cells and congenitally infected brains

    Full text link
    peer reviewedCongenital infection of the central nervous system by human cytomegalovirus (HCMV) is a leading cause of permanent sequelae, including mental retardation or neurodevelopmental abnormalities. The most severe complications include smooth brain or polymicrogyria, which are both indicative of abnormal migration of neural cells, although the underlying mechanisms remain to be determined. To gain better insight on the pathogenesis of such sequelae, we assessed the expression levels of a set of neurogenesis-related genes, using HCMV-infected human neural stem cells derived from embryonic stem cells (NSCs). Among the 84 genes tested, we found dramatically increased expression of the gene PAFAH1B1, encoding LIS1 (lissencephaly-1), in HCMV-infected versus uninfected NSCs. Consistent with these ndings, western blotting and immunouorescence analyses conrmed the increased levels of LIS1 in HCMV-infected NSCs at the protein level. We next assessed the migratory abilities of HCMV-infected NSCs and observed that infection strongly impaired the migration of NSCs, without detectable effect on their proliferation. Moreover, we observed increased immunostaining for LIS1 in brains of congenitally infected fetuses, but not in control samples, highlighting the clinical relevance of our ndings. Of note, PAFAH1B1 mutations (resulting in either haploinsufciency or gain of function) are primary causes of hereditary neurodevelopmental diseases. Notably, mutations resulting in PAFAH1B1 haploinsufciency cause classic lissencephaly. Taken together, our ndings suggest that PAFAH1B1 is a critical target of HCMV infection. They also shine a new light on the pathophysiological basis of the neurological outcomes of congenital HCMV infection, by suggesting that defective neural cell migration might contribute to the pathogenesis of the neurodevelopmental sequelae of infectio

    Neurons are MHC Class I-Dependent Targets for CD8 T Cells upon Neurotropic Viral Infection

    Get PDF
    Following infection of the central nervous system (CNS), the immune system is faced with the challenge of eliminating the pathogen without causing significant damage to neurons, which have limited capacities of renewal. In particular, it was thought that neurons were protected from direct attack by cytotoxic T lymphocytes (CTL) because they do not express major histocompatibility class I (MHC I) molecules, at least at steady state. To date, most of our current knowledge on the specifics of neuron-CTL interaction is based on studies artificially inducing MHC I expression on neurons, loading them with exogenous peptide and applying CTL clones or lines often differentiated in culture. Thus, much remains to be uncovered regarding the modalities of the interaction between infected neurons and antiviral CD8 T cells in the course of a natural disease. Here, we used the model of neuroinflammation caused by neurotropic Borna disease virus (BDV), in which virus-specific CTL have been demonstrated as the main immune effectors triggering disease. We tested the pathogenic properties of brain-isolated CD8 T cells against pure neuronal cultures infected with BDV. We observed that BDV infection of cortical neurons triggered a significant up regulation of MHC I molecules, rendering them susceptible to recognition by antiviral CTL, freshly isolated from the brains of acutely infected rats. Using real-time imaging, we analyzed the spatio-temporal relationships between neurons and CTL. Brain-isolated CTL exhibited a reduced mobility and established stable contacts with BDV-infected neurons, in an antigen- and MHC-dependent manner. This interaction induced rapid morphological changes of the neurons, without immediate killing or impairment of electrical activity. Early signs of neuronal apoptosis were detected only hours after this initial contact. Thus, our results show that infected neurons can be recognized efficiently by brain-isolated antiviral CD8 T cells and uncover the unusual modalities of CTL-induced neuronal damage

    Etude du rôle de la phosphoprotéine du Bornavirus dans la physiopathologie de l'infection

    No full text
    TOULOUSE3-BU Sciences (315552104) / SudocSudocFranceF

    Bornavirus

    No full text
    International audienc

    Physiopathologie de l'infection par le virus de Borna

    No full text
    PARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF

    Bornavirus et cellules cibles : une amitié presque sincère

    No full text
    International audienceViruses have to meet the challenge to cope with the limited capacity of renewal of neuronal cells in order to allow their replication and persistence in the central nervous system (CNS). Accordingly, many neurotropic viruses establish latency to optimize their maintenance in the CNS. Bornaviruses have evolved a different and original strategy to persist in neurons, which involves an active replication without associated cytopathic effect. Despite their small genomes and limited number of proteins, bornaviruses hijack multiple signaling pathways, leading to escape from immune surveillance or protection of cells against apoptosis. Long term persistence has even led to integration of genome elements within the host cell genome, leading to "fossil bornaviruses" in a wide range of vertebrate species. Hence, bornaviruses represent the ideal host-cell adaptation example and can thus be considered as the "best enemy" for its hosts.Se répliquer et persister au sein du système nerveux central (SNC) présente de nombreuses contraintes pour les virus, étant donnée la faible capacité de renouvellement des neurones. De ce fait, beaucoup de virus neurotropes entrent dans une phase de latence et persistent ainsi efficacement. Les bornavirus ont développé une stratégie différente et originale de persistance dans les neurones, au sein desquels ils se répliquent activement sans entraîner d'effet cytopathique. En dépit du petit nombre de protéines qu'ils expriment, les bornavirus détournent de multiples voies de signalisation cellulaires, leur permettant d'échapper à la réponse immune de l'hôte ou de conférer une résistance cellulaire à l'apoptose. La persistance à long terme du bornavirus conduit même parfois à l'intégration d'éléments de son génome dans le génome cellulaire et des « bornavirus fossiles » sont ainsi retrouvés dans un très grand nombre de génomes de vertébrés. Les bornavirus sont donc un exemple d'adaptation parfaite entre un virus et sa cellule cible, faisant d'eux les « meilleurs ennemis » de leurs hôte
    corecore